FIBRE Support

Author: Lynne Case

This document attempts to pull together information from various e-mails and meeting minutes about the FIBRE pipeline and other FIBRE specifics required. It will also describe generic IRC algorithms that are not FIBRE specific, but specify how they are used in the FIBRE pipeline.

FIBRE Standard Pipeline

Figure 1: FIBRE Standard Pipeline shows the standard pipeline for FIBRE. The bottom half of the diagram shows the “calibration” pipeline. These algorithms are typically run first in order to calculate the coefficients needed for the Signal Flux calculation. The more continuous part of the pipeline is shown on the upper part of the diagram (at the Data Store and above). The following sections describe each of the algorithms on this diagram.

[image: image1.wmf]-

DAC

ADC

+DAC

ADC Target

Max

A

B

C

DAC Target Range +/

-

0.1 PHI_0

Notes

: Using the average of the min and max to determine

the ADC Target is an approximation. Ideally you want to find

the point on the curve where the slope is the steepest. This

is where the ADC has the greatest sensitivity. Given the

ADC Target shown, points A, B, and C are all center points

of valid DAC ranges. B would have the opposite sign of A

and C. Since point A is closest to the DAC Target of 0 it is

the best choice in the above diagram. A DAC target of 0

gives the best DAC dynamic range.

Figure 1: FIBRE Standard Pipeline

The format of these sections are:

· Type: Generic or FIBRE (or subsystem) specific

· Inputs: In the FIBRE case, the input datasets.

· Outputs: In the FIBRE case, what are the outputs. In all cases, all the input channels are preserved unless otherwise specified in the description of the algorithm.

· Properties: What are the properties that will be prompted for. Also in the FIBRE case, what is the default.

· Description: What the algorithm does.

· Questions: Any remaining questions there are about this algorithm.

Time Coadder

Type:
Generic

Inputs:
Detector Data

Outputs:
Coadded data (channels coadded, plus root mean square, and sample counts of each channel coadded)

Properties:
channels to coadd (passes on all channels not coadded); sums / means (default = mean)

Description:
The user specifies a time interval for coaddition and whether they want the sums of the interval or mean. The data is read in those time chunks and averaged. The average value, plus the root mean square and sample counts are put in the output data set. The time of the sample is the end time of the chunk of data received.

TBD: There is discussion of the HK bits. Right now, they go through the dataset as a short, not a boolean. They are coadded just like any other channel. The suggestion was made that the result should be 0 if any one of the samples in the time period was 0 and 1 otherwise. This is an issue that effects the downstream processing of the chop coadder.

Time Synchronizer

Type:
Generic

Inputs:
Detector Data
Fabry-Perot Header
Telescope data

Outputs:
FIBRE Data

Properties:
TBD

Description:
This algorithm takes in multiple input datasets and outputs one dataset with all the data synchronized in time.

FP Position Calculator

Type:
Fabry-Perot specific

Inputs:
Fabry-Perot Header

Outputs:
FP Position Dataset

Properties:
TBD

Description:
This algorithm receives a data object from the input adapter PE and calculates the motor positions based on the FP header. The dataset created has time as its basis channel so that it can be synchronized with the raw data later in the pipeline.

TBD: Dominic to provide the calculation!!

Signal Flux

Type:
Generic (parameter set specifies the specifics)

Inputs:
FIBRE Data

Outputs:
Signal Flux

Properties:
parameter set name and calibration object name

Description:
Computes the “linearized” signal flux algorithm where Phi = K1 + K2*ADC + K3*DAC. The K1, K2, and K3 numbers come from the parameter set which can include expressions using items from the data store. If in the data store, the K2 and K3 values come from the calibration pipeline.

Question:
Where does the K1 come from??? In the old code this was called the “bias”. Is there something that computes that???

Chop Coadder

Type:
Generic

Inputs:
Signal Flux (in some cases, maybe just FIBRE data)

Outputs:
Coadded data (channels coadded, plus root mean square, and sample counts of each channel coadded)

Properties:
chop start channel (default: HK[1]), chop transition channel (default: HK[2]), interval specifications, channels to coadd

Description:
From Rick’s notes:

The data is coadded to form chopper average coadds, based on the values in the bits 1 and 2. Coadd boundaries are indicated by the transition of bit 1, i.e. one with bit 1 on, followed by one with bit 1 off. Only data with bit 2 on will be included in either coadd. (Data where bit two is off should be discarded.) A pair of such coadds will be produced at a rate determined by the secondary motion (roughly a rate of 4 Hz for the pair, I believe, though it might be commanded to slightly different values).

The chopper average coaddition should include the earliest and latest frame time that went into the coadd. It should include the values for the coadded flux averages and rms. It should include the total number of frames that go into the coadd. It should include values for the three commanded FP (Fabry Perot) motor positions (see below) as well as a derived FP spacing (highly desirable) and 16 pixel wavelengths (desirable) as defined in the algorithms below. The values used for the motor positions and the inputs to the algorithms are contained in the FP header record. The coadds could also include a value associated with the telescope position (desirable; see below).

Chopper coadds can be treated as pairs of measurements: One with bit 1 high and the subsequent coadd with bit 1 low. Note that during FP operations both coadds in a pair will have the same FP motor positions and derived values.

We need to make sure the current chop coadder does not assume what the transition values are. New property(ies) should be added to the algorithm to specify the transition values. For example, the values might not be 0 or 1, but could be 1 and 2 or negative numbers versus positive numbers.

Data Recorder

Type:
Generic

Inputs:
Any dataset

Outputs:
None

Properties:
Archive Name

Description:
Stores the data objects and all the data in the datasets in a set of serialized Java files. The data can be replayed using the Data Player.

Pair Differencer

Type:
Generic

Inputs:
Chop coadded data

Outputs:
Pair Difference data

Properties:
interval size; channels to subtract.

Description:
From Rick’s note:

This is simply the difference between the values for each pixel for position one vs. position two in a coadd pair. (Whether it is a "bit 1 on" minus "bit 1 off" or vice versa could depend on the value of the telescope position, see below(desirable)). The RMS values should be the sqrt("bit 1 on" rms^2 + "bit 1 off " rms^2) (This is actually not quite right. If you ever get this far in the list, come see me and I'll get it straight). The number of frames carried should be sum of the number of frames in the two coadds. The time range given should the first time of the "bit 1 on" and the last time of the "bit 1 off" data.

According to Dominic and Johannes, this data will be archived.

We need to use the telescope information to determine the chopping direction and therefore which bit position to subtract from.

TBD: Dominic to talk to the telescope people to have this information added to the telescope data stream. It is currently not available yet.

Question:
We have a differencing algorithm, so we need the questions above raised by Rick to be answered.

Pair Average Data

Type:
Generic

Inputs:
Chop coadded data only.

Outputs:
Pair Averaged Data

Properties:
Difference direction (default = left to right); interval size; channels to average.

Description:
From Rick’s note:

This is the average of the data for the pairs. RMS values and number of frames should be calculated in the identical way as the Pair Difference data. The variations in this parameter trace the variation in the sky brightness.

Fabry-Perot Translator

NOTE: This is not an algorithm, but a parser of the Fabry-Perot data. Rather than just parsing it and publishing objects, the translator will calculate the motor positions and spacing as defined below (from Rick’s notes).

FP Position (Separation) Algorithm: The header contains the coefficients for a fourth order polynomial (I think), which is applied to the motor 1 position, and returns the FP separation (probably in microns).

Pixel wavelength algorithm: The FP has peaks in its response for wavelengths that are an exact multiple of the separation. (This is an approximation, but its good enough for now). Thus if the separation is "X", then the response is for all wavelengths, lambda, where

X = N * lambda

N, an integer, is the "order" of the response. For example, if the FP is separated by 1 mm, then there peaks will be at

lambda
N

1000
1

500
2

333
3

250
4

200
5
etc.

By construction, we remove the ambiguity at which wavelength we are looking at by filters (which particularly give a short wavelength cutoff) and in FIBRE by the use of a grating which acts like a prism and distributes the light along the 16 pixels of FIBRE depending on their wavelength. The resolution of the grating is broader than that of FP, but it is sufficient so that each pixel will generally only have a single "order" from the FP get through at a time. There will be a calibration object that gives each pixel's mean grating wavelength (lambda_{g;i} where i indicates the pixel). From the FP separation, X, then the order for each pixel is calculated where

N_i = NearestInteger(X / lambda_{g;i})

and from that generate a wavelength

lambda_i = X / N_I

Calibration Pipeline

Figure 2 shows the configuration of the calibration pipeline. Calibration of the instrument is required after every cool-down of the instrument. This may happen just once per an observation run, if all goes well with the instrument. It may happen a few times if there are hardware issues that have to be addressed. This calibration can be done manually if this pipeline is not available, but it is a time-consuming operation that would be more accurate if it was done using IRC.

[image: image2.wmf]Bin

Coadder

Auto

Correlator

Bounds

Finder

Range

Finder

FluxCoeff

Finder

???

Detector Input

Adaptor PE

Figure 2: Calibration Pipeline

Bounds Finder

Type:
Generic

Inputs:
Raw Data (ADC)

Outputs:
Bounded Dataset (Data object with min and max values for ADC)

Properties:
Channel Types to find the bounds for (default = ADC); interval specifications

Description:
This algorithm reads an interval of data and determines the maximum and minimum values of the specified input channel. The output data object will not be published until the entire dataset is read.

Questions:
Should we provide a property for how many intervals to read or just let it go continuously and make the user stop it when necessary?

Range Finder

Type:
FIBRE specific

Inputs:
Bounded Dataset

Outputs:
Range Dataset (Data object with the DAC and ADC target ranges and original dataset)

Properties:
DACTarget (?) – default = 0, sign of slope – default = +, Phi_0

Description:
Finds the optimal range of DAC target values based on the ADC values. Here is an excerpt from a Rick e-mail:

Split the difference (take the average of the min and max) and call this the ADCTarget. Find the value of the DACBest for each pixel where the average associated ADC is nearest to ADCTarget, that is also nearest to a DACTarget (this should generally be zero) AND where the magnitude of the slope of ADC vs DAC is the right sign (as given by a parameter).

Determine a target range of DAC counts defined by DACBest +/- 0.1 Phi_0 (another parameter). (Perhaps repeat the sweep just concentrating on this range, and perhaps using a delta of only 1 to get the best resolution).

[image: image3.wmf]Data

Store

Data

Store

Archive

Archive

Time

Coadder

Fabry

-

Perot

Input Adaptor PE

Telescope

Input Adaptor PE

FP Position

Calculator

Time

Synchronizer

Signal Flux

Data

Recorder

Chop

Coadder

Pair

Differencer

Pair

Average

Archive

Archive

Data

Recorder

TBD

: Does the Chop

-

Beam

average come after the

differencer

or the chop

coadder

??

Does it get archived or the difference

only or both??

Detector

Input Adaptor PE

Bin Coadder

Type:
Generic

Inputs:
Range Dataset

Outputs:
Coadded Dataset (coadded channels still have the same name, plus, <channeltype>_RMS and <channeltype>_SampleCounts).

Properties:
Where to derive the range (property or from the data object), size of each bin (default 5 counts), duration of time to get data (default 30 seconds).

Description:
Bins the data into buckets that can be defined using the range and the size of the bin. The data in each bin is coadded (either as a mean or sum) and output with the root mean square (RMS) and number of items in the bucket (SampleCounts).

Auto Correlator

Type:
Generic

Inputs:
Coadded Dataset

Outputs:
DACCountsPerPhi0

Properties:
TBD

Description:
Determines the DACCountsPerPhi0 for the binned data.

Question:
What is the calculation for this? Want to verify that the current algorithm is correct.

Flux Coeff Finder

Type:
FIBRE specific

Inputs:
Correlated dataset (needs DACCountsPerPhi0 plus ADCTarget plus ???)

Outputs:
???

Properties:
TBD

Description:
From Rick’s message:

Fit the data with a linear least squares model to the data over the target range giving

ADC = DAC * slope + offset
We can define the DACOrigin as

DACOrigin = (ADCTarget - offset) / slope
 From this we can define the coefficients used to go from counts to signal flux:

flux = a * ADC + d * DAC + c
where

d = 1./ DACCountsPerPhi0

a = 1./(slope * DACCountsPerPhi0)

c = - (a * ADCTarget + d * DACOrigin)
(The choice for c means that the flux is zero around the Origin, Target values). (I might have the sign wrong for a or d... will have to think about this). These should go into the datastore.

Question:
Does this algorithm need to do anything besides store the output in the Data Store???

Visualizations

Although these are not separate visualizations as we define them, it is nice to know what the scientists are expecting to plot using our standard visualizations. Here is a list extracted from Rick’s e-mail and other conversations.

· Coadded fluxes vs. time (strip chart) – including the housekeeping bits.

· Chopper throughput visualization (text visualization) - This is a simple text visualization that monitors the fraction of the data that goes into the different states. For every pair of chopper average coadds (bit one on and bit one off) calculate the number and fraction of good frames (bit two on) that are accumulated in bit one On, the number/fraction of good frames accumulated with bit one off, and finally the number/fraction of bad frames (bit two off) irrespective of the bit one state. (The total fraction of these three cases should add up to one). The text visualization could give the value of the last coadd pair (which will update rather frequently, four times a second). (Alternatively you could display the value for the last N pairs, where N is a number like 4 or so).

Sounds like a Bad Frame Calculator algorithm in front of some sort of text visualization.

Question: How do we know what a bad frame is???
· Accumulator Visualization (scatter chart?) - This is a new visualization scheme, similar to the standard 2-d plot, except now absolute time can not be the x-axis. Instead, we choose some other variable by which to bin the data (e.g. motor 1 commanded position). As data is accumulated, the (weighted (useful)) mean values are calculated for the data in each bin (along with an estimate of the error in this mean based on either the rms of the data being binned or if previously coadded data is binned based on the rms and weight (useful)). The visualization should be continually updated as new data comes in (the updates could be in batches coarser than the data, e.g. once every few seconds or so as set by a chunker). It should be possible to reset the visualization accumulation to zero, either by script-able command, or by setting a property.

Sounds like just a bin coadder in front of a scatter chart (?)

· Pair Difference Data
· Pair Average Data
· Telescope spectra – use the accumulator visualization to see when the telescopePositionValue is used and when it is not used (one per visualization).

Sounds like a ChannelValueFilter algorithm in front of a visualization?

· Pair Difference Data vs. FP Pixel wavelength (strip chart)
Scripts

Scripts that need to be written for FIBRE at a minimum are:

· Setup and run calibration sequence

· Setup and start the standard pipeline

Generic IRC Algorithms

The following algorithms will also be available with IRC for use with FIBRE.

Scaler

This algorithm multiplies each sample of all input channels by a constant. The constant(s) are defined in a parameter set. The parameter set supports having one constant for all channels, one constant per detector column, one constant per detector, and one constant per detector column per ADC/DAC (i.e., 4 ADC and 4 DAC constants). This can be used for DAC counts to volts,

Bias

This algorithm adds a signed constant to each sample of all input channels. The constant(s) are defined in a parameter set. (Note: this could be an add or a subtraction based on the sign of the constant provided.)

LUT

This algorithm produces output values by doing a table lookup for each sample of all input channels. The input samples are assumed to be short integers between 0 and 2**14 - 1. The LUT(s) are defined in a parameter set.

Polynomial

This algorithm produces output values by applying a polynomial to each sample of all input channels.. The polynomial cooefficients are defined in a parameter set.

Power Density Spectrum

Input is a Dataset composed of a (time-based) series of Frames. For each input Dataset, a single Dataset is output. The output dataset contains a (frequency-based) series of Frames. Dimensionality and indexing of these Frames match that of the input stream.

Period Finder

This algorithm finds the … At this time, we don’t know the difference between this and the AutoCorrelator.

